基本解釋[數(shù)學(xué)]交換域可換體英漢例句雙語(yǔ)例句In this paper, we discuss the classification of 3-dimensionally commutative algebras on algebraically closed field.研究了代數(shù)閉域上三維交換代數(shù)的分類(lèi)。It is obtained that the commutative completely idempotent algebra which has unit element and no zero factor is a extension field on F.本文首先得出哉F上有單位元無(wú)零因子交換完全冪等代數(shù)A是F的擴(kuò)域的結(jié)論,給出域F上二維完全冪等代數(shù)的結(jié)構(gòu);In Chapter 1, briefly introduce the concept of noncommutative space and nori-commutative field theory, review the history and important results of studying the noncommutative soliton solution.第一章,簡(jiǎn)要介紹非對(duì)易的概念及非對(duì)易場(chǎng)論,回顧前人在非對(duì)易孤子解方面的研究。commutative field更多例句詞組短語(yǔ)短語(yǔ)Commutative vector field 交換向量場(chǎng)commutative new field [數(shù)]交換新域Non -commutative quantum field theory 非對(duì)易場(chǎng)論non -commutative field [數(shù)]非交換域;非可換體commutative field更多詞組專(zhuān)業(yè)釋義數(shù)學(xué)交換域可換體